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Hydrothermal wave instability
of thermocapillary-driven convection

in a transverse magnetic field
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We study the linear stability of thermocapillary-driven convection in a planar un-
bounded layer of an electrically conducting low-Prandtl-number liquid heated from
the side and subjected to a transverse magnetic field. The thresholds of convective
instability for both longitudinal and oblique disturbances are calculated numerically
and also asymptotically by considering the Hartmann and Prandtl numbers as large
and small parameters, respectively. The magnetic field has a stabilizing effect on the
flow with the critical temperature gradient for the transition from steady to oscilla-
tory convection increasing as square of the field strength, as also does the critical
frequency, while the critical wavelength reduces inversely with field strength. These
asymptotics develop in a strong enough magnetic field when the instability is entirely
due to the jet of the base flow confined in the Hartmann layer at the free surface. In
contrast to the base flow, the critical disturbances, having a long wavelength at small
Prandtl numbers, extend from the free surface into the bulk of the liquid layer over
a distance exceeding the thickness of the Hartmann layer by a factor O(Pr−1/2). For
Ha . Pr−1/2 the instability is influenced by the actual depth of the layer. For such
moderate magnetic fields the instability threshold is sensitive to the thermal properties
of the bottom of the layer and the dependences of the critical parameters on the
field strength are more complicated. In the latter case, various instability modes are
possible depending on the thermal boundary conditions and the relative magnitudes
of Prandtl and Hartmann numbers.

1. Introduction
Thermocapillary or Marangoni convection is a fluid flow driven by thermally

induced variation of the surface tension. For common liquids, whose surface tension
decreases with temperature, the surface is driven from hot to cold regions. Due to
viscosity the surface motion spreads to the underlying liquid but incompressibility
gives rise to a pressure gradient driving a return flow in the bulk of the liquid. Such
flows can occur in systems with liquid–gas or liquid–liquid interfaces subject to a
temperature gradient. There are several different ways in which the thermocapillary
convection can take place. In the classical case, when the temperature gradient is
strictly normal to the interface, the latter is at a constant temperature and, thus, in
a static mechanical equilibrium, which becomes unstable as the temperature gradient
exceeds some critical value (Davis 1987). The instability results in a steady cellular

† Present address: Institute of Physics, University of Latvia, Salaspils, Latvia; email priede@sal.lv.



212 J. Priede and G. Gerbeth

convection (Pearson 1958) or in travelling surface waves (Takashima 1981) when the
liquid is cooled or heated from the surface, respectively.

This paper is concerned with another arrangement where the temperature gradient
is applied along the liquid surface. In this case convection starts immediately regardless
of how small the temperature gradient is. Here the thermocapillarity plays a double
role: besides driving the basic flow it can also be a cause of a dynamic instability called
hydrothermal waves which arise as the longitudinal temperature gradient exceeds a
certain threshold depending on the liquid properties and the geometry (Smith &
Davis 1983a). Hydrothermal waves are coupled flow and temperature disturbances
sustained by velocity and temperature gradients of the basic flow. Coupling of the
flow and temperature fields through the surface tension is essential for this instability
and this coupling makes it different from the usual hydrodynamic instability.

Thermocapillary-driven flows play an important role in several semiconductor
crystal growth processes from the melt like Czochralski and the float-zone methods
where a free surface of the melt is present (Schwabe 1988). The melt flow can
significantly affect the homogeneity and purity of the crystals grown. Most crucial
for the crystal growth is the steadiness of the flow. An oscillating melt motion leaves
marks in the grown crystal in the form of dopant layers called striations which
seriously deteriorate the quality of the produced crystals.

Because molten semiconductors possess the electrical conductivity of liquid metals,
magnetic fields can be used to control the melt flow (Series & Hurle 1991). For several
years this has been a motivation for a series of studies on the effect of magnetic fields
on thermocapillary instabilities. So far, most attention has been paid to the onset of
a steady Bénard–Marangoni convection in a planar unbounded liquid layer heated
from below and subject to a transverse magnetic field. This problem is now well
understood due to theoretical studies by Nield (1966), Sarma (1979), Maekawa &
Tanasawa (1989) and Wilson (1993a): an increase of magnetic field results in a
monotonic rise of the critical temperature gradient. In a strong magnetic field the
critical temperature gradient and the critical wavenumber increase as the square and
square root of the field strength, respectively (Wilson 1993a). However, the magnetic
field cannot stabilize long-wave surface deformations which thus remain the most
dangerous perturbations (Wilson 1993a). Oscillatory Marangoni convection caused
by heating from the top in a magnetic field has been considered by Nitschke, Thess
& Gerbeth (1991) and Wilson (1993b). This instability can effectively be suppressed
by a relatively weak magnetic field. Hydrothermal wave instability in a magnetic field
parallel to the liquid layer was the subject of our previous study (Priede & Gerbeth
1997a). Such a magnetic field has a stabilizing effect on all disturbances except those
aligned with the field which are not influenced at all. In the case of a parallel magnetic
field the most effective stabilization is provided by the field spanwise to the basic flow.
However, more effective stabilization is provided by a magnetic field transverse to the
liquid layer which in contrast to the coplanar one effectively retards the basic flow.
Until now the influence of a transverse magnetic field has been considered only on
the longitudinal hydrothermal waves (Priede, Thess & Gerbeth 1994) which, however,
are not the most dangerous perturbations.

In this paper we present a detailed study of the effect of a transverse magnetic field
on both longitudinal and oblique hydrothermal wave instabilities of a thermocapillary-
driven flow in a planar unbounded layer of an electrically conducting liquid heated
from the side. For longitudinal waves the dispersion relation is found in an analytic
form which is solved numerically for neutrally stable modes. For non-longitudinal
disturbances the linear stability problem is solved completely numerically. However,
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numerical results alone often do not provide the most valuable information contained
in the solution of such an idealized problem such as considered here. Particular numer-
ical values for real applications and this simple model may be quite different, though
the physical mechanisms and the dependence between the parameters characterizing
them may still be the same. This information is contained in scaling relations which
are not always obvious from the numerical solution. To obtain the relevant scalings
we resort to an order of magnitude analysis. We use the order of magnitude estimates
or implications from the numerical results, when the first are not simply obtainable,
to solve the problem asymptotically. The asymptotic solution is complicated by the
presence of two dimensionless parameters in the problem: the Prandtl number, the
ratio of the heat conductivity and the kinematic viscosity, which is typically small
O(10−2) for semiconductor melts and liquid metals, and the Hartmann number Ha
characterizing the strength of the magnetic field, which may be large O(102). There
are a number of asymptotic solutions possible depending on the relative magnitude
of both parameters taken to certain powers. For instance, if 1 � Ha � Pr−1/2 the
asymptotic solutions differ depending on the thermal boundary conditions at the bot-
tom of the layer. For Ha � Pr−1/2, there is another asymptotic solution independent
of the thermal boundary conditions.

For the most dangerous oblique waves, an asymptotic solution is obtained by com-
bining analytical and numerical approaches. In the case of strong magnetic field, a
direct numerical solution is often complicated by the presence of very different length
scales in the problem. There is a thin Hartmann layer developing at the free surface
where the basic flow is confined and a complicated interaction between the distur-
bances occurs. For small Prandtl numbers, the critical wavelength is typically much
longer than the characteristic thickness of the Hartmann layer. Thus disturbances
extend far outside the Hartmann layer. It is not simple for numerics to resolve two
such very different length scales. On the other hand, because outside the Hartmann
layer the basic flow is almost suppressed, the disturbance equations there are relatively
simple and can be solved analytically for oblique waves also. This analytic solution
in the outer region can effectively be combined with the numerical solution in the
boundary layer. As a result, we obtain a series of simple expressions for the instability
parameters which besides containing scaling information also provide a satisfactory
approximation to the full numerical solution.

The layout of the paper is as follows. Section 2 presents the problem formulation.
Longitudinal waves are analysed in § 3 with Hartmann-layer and finite-depth modes
for insulating and conducting bottom walls considered in §§ 3.1, 3.2 and 3.3, respec-
tively. For an insulating bottom there are two finite-depth instability modes found
with critical frequencies lower and higher, respectively, than the inverse thermal re-
laxation time over the depth of the layer. Details of the asymptotic solutions for these
modes are presented in the Appendix, §§A.1.1 and A.1.2. An asymptotic solution for
the finite-depth longitudinal waves in the case of a perfectly conducting bottom is
obtained in the Appendix, §A.2. Oblique waves are considered in § 4 with §§ 4.1, 4.2,
and 4.3 devoted to the Hartmann-layer and finite-depth modes for insulating, and
conducting bottoms, respectively. Section 5 contains summary of the work and some
concluding remarks.

2. Formulation of the problem
Consider an unbounded horizontal layer of viscous electrically conducting liquid

of density ρ, kinematic viscosity ν, thermal conductivity κ and electric conductivity σ.
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Figure 1. Sketch of the model with the basic velocity and temperature profiles.

The layer having depth d at rest is bounded from below by a plane perfectly electrically
insulating plate, and above by a free surface. The bottom of the layer is assumed
to be either perfectly thermally insulating or conducting while the free surface is
considered as an adiabatic boundary. A constant temperature gradient β is imposed
along the layer, and a steady shear flow is set up by temperature-dependent surface
tension which is assumed to vary according to the linear law τ = τ0−γ(T −T0), where
γ = −dτ/dT > 0 is the negative rate of change of surface tension with temperature;
τ0 and T0 are reference values for surface tension and temperature, respectively. The
flow is subjected to a uniform magnetic field of induction B = ezB transverse to
the liquid layer. As shown in figure 1, the origin of the Cartesian coordinate system
is set at mid-height of the layer with the x-axis directed oppositely to the imposed
temperature gradient and the z-axis normal to the plane of the layer. The depth d
is assumed to be small enough so that buoyancy can be neglected in comparison to
thermocapillary effects. The surface tension is assumed to be high enough so that
the free surface may be considered as a planar and non-deformable boundary. The
distortion of the external magnetic field by the fluid flow is neglected in accordance
with the inductionless or low magnetic Reynolds number approximation commonly
employed in laboratory magnetohydrodynamics (Moreau 1990).

Transforming the governing equations and boundary conditions to a dimensionless
form the depth d is chosen as length scale, and the time t, velocity field v, pressure field
p, temperature difference T−T0, and the induced electrostatic potential φ are referred
to scales d2/ν, ν/d, ρν2/d2, βd, and Bν, respectively. The phenomena under con-
sideration are governed by the Navier–Stokes equation with an electromagnetic force
term added, the incompressibility constraint, the energy equation and the continuity
equation for electric current

∂tv + (v · ∇)v = −∇p+ ∇2v + Ha2(−∇φ+ v × ez)× ez, (2.1)

∇ · v = 0, (2.2)

∂tT + v · ∇T = Pr−1∇2T , (2.3)

∇2φ = ez · ∇× v, (2.4)

where Ha = Bd(σ/ρν)1/2 is the Hartmann number, and Pr = ν/κ is the Prandtl
number. The mechanical boundary conditions on the free surface z = 1

2
are ez · v = 0
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and

ez × (∂zv + Re∇T ) = 0, (2.5)

where Re = γβd2/ρν2 is the Reynolds number. In fact, condition (2.5) represents
the sole driving force for the convective flow considered here: the balance between
thermocapillary and viscous stresses at the free surface. For consistency with previous
papers on this subject we use also the Marangoni number Ma = RePr in addition to
the Reynolds number. So the Marangoni number is not an independent parameter
and it is used only for the convenience of representation of the results.

The free surface is assumed to be an adiabatic boundary

∂zT = 0 on z = 1
2
.

On the rigid lower boundary, there are conditions of no slip, impermeability and zero
heat flux in the case of thermally insulating bottom

v = 0; ∂zT = 0 on z = − 1
2
,

or a fixed temperature for perfectly thermally conducting bottom

T (−1/2) = T∞(x) = −x.
Subsequently these two boundary conditions will be referred to as insulating and
conducting ones. At both boundaries, assumed to be electrically insulated, the normal
component of the induced electric current must vanish

jn = −∂zφ = 0 on z = ± 1
2
. (2.6)

The system (2.1)–(2.6) has a steady parallel flow solution v̄ = (ū, 0, 0) maintaining zero
mass flux through any vertical cross-section. Neglecting exponentially small terms for
strong magnetic field (Ha � 1) this solution takes the simple form

ū(z) = Re

(
exp (−( 1

2
− z)Ha)

Ha
+

exp (−( 1
2

+ z)Ha)− 1

Ha2

)
, (2.7)

T̄ (x, z) = −x− PrRe

(
exp (−( 1

2
− z)Ha)− 1

2
z(z + 1)Ha

Ha3
+

exp (−( 1
2
+ z)Ha) + zHa

Ha4

)
,

(2.8)

p̄(x) = Re x, φ̄(z) = 0. (2.9)

At large Hartmann numbers, the basic flow forms a jet at the free surface. Both the
characteristic thickness and the velocity of the jet decrease with the magnetic field as
∼ Ha−1. The constant pressure gradient drives a return flow in the core region which
is separated by the jet from the free surface and by the Hartmann layer from the
bottom. The return flow has a uniform velocity ∼ Ha−2.

We analyse the linear stability of the basic state (2.7)–(2.9) with respect to infinites-
imal disturbances in the form of a plane travelling wave

(v, p, T , φ) = (v̄, p̄, T̄ , φ̄) + {v̂(z), p̂(z), T̂ (z), φ̂(z)} exp (ik · r + λt),

where k = (kx, ky) and r are wave and radius vectors, respectively; λ is a complex
growth rate. Upon substituting the solution sought in such a form into the governing
equations (2.1)–(2.4) and applying the curl operator twice to (2.1) in order to eliminate
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both the pressure and the scalar potential, the equations for the remaining disturbance
amplitudes may be written as

λD2ŵ =
[
D4 −Ha2(ez ·D)2

]
ŵ − ikx

[
ūD2 − ū′′] ŵ, (2.10)

λD2û =
[
D4 −Ha2(ez ·D)2

]
û−D2

[
ikxūû+ kyū

′ŵ
]
, (2.11)

λT̂ =
[
Pr−1D2 − ikxū

]
T̂ − T̄ ′ŵ + k−2(ikxŵ

′ + kyû), (2.12)

where D ≡ (ezd/dz + ik
)

and the prime denotes derivative with respect to z, ŵ = ez · v̂
is the vertical velocity, and û = (k×ez)·v̂ denotes the velocity component perpendicular
to the wave vector multiplied by the wavenumber which henceforth is referred to as
the longitudinal velocity. Notice that the velocity disturbances are considered in the
coordinate system linked with the direction of the wave vector.

The boundary conditions for the vertical velocity ŵ are

ŵ′′( 1
2
) + k2ReT̂ ( 1

2
) = 0, (2.13)

ŵ′(− 1
2
) = ŵ(± 1

2
) = 0. (2.14)

For the longitudinal velocity there are two explicit boundary conditions

û′( 1
2
) = û(− 1

2
) = 0. (2.15)

Notice that because of the eliminated electrostatic potential the equation for the
longitudinal velocity (2.11) has become of the fourth order. Two additional boundary
conditions required for û follow from the boundary conditions for the induced electric
current (2.6). Projecting the linearized Navier–Stokes equation on the vector k × ez
we obtain the required boundary conditions solely in terms of û[

D2 − λ−Ha2
]
û′ − ikxū

′û = kyū
′ŵ′ on z = ± 1

2
. (2.16)

The boundary conditions for the temperature perturbation are

T̂ ′( 1
2
) = 0, (2.17)

at the free surface and

T̂ ′(− 1
2
) = 0, T̂ (− 1

2
) = 0 (2.18)

at insulating and conducting bottoms, respectively.
For longitudinal disturbances (kx = 0) equations (2.10)–(2.18) can be solved an-

alytically as done by Smith & Davis (1983a) for the non-magnetic case. For non-
longitudinal disturbances the problem is solved numerically by the modified Cheby-
shev tau spectral method suggested by Gardner, Trogdon & Douglass (1989).

3. The longitudinal waves
It is instructive to begin the analysis with longitudinal disturbances for which an

analytical dispersion relation can be obtained. Although these disturbances are not
the most unstable ones, for small Prandtl numbers they may be very close to the
most dangerous oblique waves. So analysis of longitudinal waves can be useful for
understanding of the more complicated instability mechanism of oblique waves.

The neutral stability curves and the corresponding frequencies calculated from the
analytical dispersion relation are shown in figure 2 for Pr = 0.01 and various strengths
of magnetic field. As is seen, increase of the magnetic field results in the increase of
the critical Marangoni number which is given by the global minimum of each neutral
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Figure 2. The marginal Marangoni number (a) and frequency (b) of longitudinal mode (kx = 0)
versus wavenumber at Pr = 0.01 and various Hartmann numbers for an insulating bottom.

curve. The dependence of the instability characteristics on the Hartmann number,
which is shown in figure 3, becomes particularly simple in a strong magnetic field
(Ha � 1). In this case, the critical wavenumber increases directly with the Hartmann
number meaning that the wavelength of the most dangerous disturbance reduces
inversely with the strength of the magnetic field. The critical Marangoni number
increases as ∼ Ha2. Such asymptotic dependences can straightforwardly be inferred
from the effect of the magnetic field on the basic flow which in a strong magnetic field
forms a jet at the free surface having the thickness of the Hartmann layer ∼ Ha−1.
This is the effective length scale in the strong magnetic field. Thus the wavenumber,
being proportional to the characteristic length, scales as ∼ Ha while the Marangoni
number and the frequency, being proportional to square of the characteristic length,
both scale as ∼ Ha2.

3.1. Hartmann-layer mode

According to the above considerations, the hydrothermal wave instability in a strong
enough magnetic field is due to the jet in the Hartmann layer at the free surface.
Therefore it might be useful to focus on the stability of this jet rather than that of
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Figure 3. The critical Marangoni number (a), wavenumber (b) and frequency (c) of longitudinal
waves (kx = 0) versus the Hartmann number at various Prandtl numbers for an insulating bottom.
Asymptotics (1), (2) and (3) drawn close to the corresponding numerical results correspond to the
Hartmann-layer mode and finite-depth low-frequency and intermediate-frequency modes obtained
in §§ 3.1.2, A.1.1 and A.1.2, respectively.

the whole layer. For this purpose, we take the thickness of the Hartmann layer as the
characteristic length scale. Then the wavenumber, the frequency and the Reynolds
number rescale as

k = k̃Ha , λ = λ̃Ha2, and Re = R̃eHa2. (3.1)
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numerical results, correspond to the Hartmann-layer mode and the finite-depth low-frequency
and intermediate-frequency modes for an insulating bottom, and finite-depth mode for conducting
bottom obtained in §§ 3.1.2, A.1.1, A.1.2 and A.2, respectively.

After rescaling, the leading-order terms of the basic velocity (2.7) and the vertical
gradient of temperature profile (2.8) are

ũ(z̃) = R̃e e−z̃ and T̃ ′(z̃) = PrR̃e(e−z̃ − 1),

where z̃ = ( 1
2
−z)Ha . Upon this transformation, equations (2.10)–(2.12) remain mainly

unchanged except for the Hartmann number being replaced by unity in equations
(2.10), (2.11) and in the boundary conditions (2.16). Finally, rescaling the longitudinal
velocity and temperature perturbations by Ha−1 and Ha−2, respectively, the stability
problem for the Hartmann layer remains explicitly dependent only on the Prandtl
number. The critical Marangoni number and wavenumbers calculated from this
model along with the exact solution are plotted in figure 4 versus the Prandtl number.
For large enough Hartmann numbers both solutions almost coincide thus confirming
the validity of the Hartmann-layer model.
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3.1.1. Order-of-magnitude estimates

The problem can be further simplified by considering the Prandtl number as
a small parameter. The advantage of such an approach is twofold. First, it can
give a useful insight into particular details of the instability mechanism. Second, it
yields simple analytic expressions for the instability parameters. Our goal here is to
estimate the marginal Marangoni number together with the associated frequency and,
eventually, to locate the minimum of the Marangoni number that gives the threshold
of instability. Both the marginal Marangoni number and the corresponding frequency
are defined by the balance condition of viscous and thermocapillary stresses at the
free surface (2.13) which has to be evaluated from the governing equations. To find
both the Marangoni number and the frequency it is necessary to evaluate not only the
magnitude of the quantities involved, but also the relative phases of their oscillations.
Thus the estimates are carried out in complex form. Moreover, to assess the phase it is
necessary to consider not only the leading, but also the next order small contributions
(Priede & Gerbeth 1997b). The instability mechanism involving interaction of vertical
and longitudinal velocity perturbations with the temperature field is, in general,
described by Smith (1986). Here we use a non-trivial order-of-magnitude analysis to
estimate the critical parameters of this instability.

It is advantageous to begin the analysis with long-wave disturbances. The first
necessary quantity is the viscous stress at the free surface which can be estimated as
ŵ′′(0) ∼ (1 + iω̃0)ŵ0, where ω̃0 is the frequency of marginally stable oscillations to be
found and ŵ0 is a small but otherwise arbitrary amplitude of the vertical velocity. The
real part of the viscous stress, which is in phase with the disturbance of the vertical
velocity, is due to the shear over the Hartmann layer. The imaginary part shifted in
phase by π/2 with respect to the real part is due to the viscous oscillatory boundary
layer (Priede & Gerbeth 1997b). The vertical velocity advecting the non-uniformly
distributed momentum of the basic flow further disturbs the longitudinal velocity. The
magnitude of this perturbation û0 can be estimated by comparing the source term
with the sum of viscous and transient terms in equation (2.11) (1 + iω̂0)û0 ∼ k̃R̃eŵ0.
Perturbation of the longitudinal velocity in turn advects the horizontal gradient of the
basic temperature field so giving rise to the temperature perturbation. This, occurring
in the Hartmann layer at the free surface, diffuses into the bulk of the layer. For the
long-wave disturbances, the depth of penetration of the temperature disturbance is
determined by the characteristic thickness of the oscillatory thermal boundary layer
δt ∼ (iω̃0Pr)−1/2. To evaluate the temperature perturbation it is advantageous to
consider equation (2.12) in an integral form over the depth of the thermal boundary
layer which results in

|δt|(Pr−1k2 + iω̂0)T̂ 0 ∼ k̃−1û0.

So we get rid of the normal gradient of the temperature disturbance which vanishes at
both the free surface and outside the thermal boundary layer. The relation obtained
states that the heat advected within the Hartmann layer of dimensionless thickness
O(1) is all used in transient heating of a layer of thickness O(δt) accompanied by some
heat diffusion across the wavelength. The above relations combined with condition
(2.13) lead to the following order-of-magnitude analogue of the dispersion relation:

(1 + iω̂0)
2(Pr−1k̃2 + iω̂0) ∼ |δt|−1(k̃R̃e)2. (3.2)

Since the right-hand side of the above equation is real, the imaginary part of the left
hand side must be zero. This phase balance defines the frequency of neutrally stable
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oscillations. For k � 1, we obtain

ω̃0 ∼ (1 + 2Pr−1k̃2)1/2 ∼ 1, (3.3)

which is very similar to the corresponding result for the case of adiabatic boundaries
without magnetic field (Priede & Gerbeth 1997b). According to this estimate, the
frequency of neutrally stable oscillations is determined by the characteristic viscous
diffusion time over the Hartmann layer as long as this time is shorter than the thermal
diffusion time over the wavelength. The marginal Reynolds number results from the
real part of the dispersion relation (3.2)

R̃e ∼ k̃−1ω̃0|δt|1/2 ∼ k̃−1Pr−1/4. (3.4)

The marginal Reynolds number decreases with increase of the wavenumber according
to the above relation until the thermal diffusion time across the wave becomes as
short as the period of neutrally stable oscillations given by the viscous diffusion time
over the Hartmann layer. At this point, the thermal diffusion across the wave begins
to smooth out the temperature perturbation. As a result, the Reynolds number must
increase to maintain the equilibrium between the viscous and thermocapillary stresses
at the free surface. This is the effect that selects the critical wavenumber

k̃c ∼ Pr1/2, (3.5)

which substituted into (3.4) gives the estimate of the critical Reynolds number

R̃ec ∼ Pr−3/4. (3.6)

The validity of the above estimates is confirmed by comparison with the numerical
results. Analogously to the case without the magnetic field and adiabatic bound-
aries (Priede & Gerbeth 1997b), estimate (3.5) predicts the critical wavelength to be
considerably longer than the characteristic thickness of the Hartmann layer.

3.1.2. Asymptotic solution

The estimates obtained allow us to solve the stability problem asymptotically.
For this purpose the Reynolds number and wavenumber are rescaled once more in
accordance to estimates (3.5), (3.6)

k̃ = Pr1/2k̆, R̃e = Pr−3/4R̆e,

and the perturbation amplitudes are expanded in the following asymptotic series of
the small parameter Pr1/2:

{ŵ, û, T̂ } =

∞∑
n=0

Prn/2{Prn/2wn, k̃R̃e un/2,Pr1/2R̃eTn/2}.

Equation (2.10) for the leading-order perturbation of the vertical velocity in the
Hartmann layer takes the form

d2

dz̃2

[
d2

dz̃2
− 1− λ̃

]
wi0 = 0, (3.7)

whose solution may be written as

wi0(z̃) = 1− e−γiz̃ , (3.8)

where γi = (1+λ̃)1/2. In this case, the perturbation extends outside the Hartmann layer
a distance comparable to the wavelength. Therefore we introduce an outer coordinate
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z̃o = Pr1/2z̃. The leading-order perturbation of the vertical velocity in the bulk of the
layer is governed by [

d2

dz̃2
o

− k̆2 λ̃

1 + λ̃

]
wo0 = 0,

whose solution is wo0(z̃o) = Ao0e
−zoγo , where γo = k̆(λ̃/(1 + λ̃))1/2. Matching of both

solutions gives Ao0 = 1. The leading-order composite solution asymptotically valid for
the whole layer is

w0(z̃) = wo0(z̃o)− wo0(0) + wi0(z̃) = exp (−z̃Pr1/2γo)− exp (−z̃γi).
Now we proceed to the longitudinal velocity whose solution in the bulk of the layer
is analogous to the previous one uo0(z̃o) = Bo0e−zoγo . In the Hartmann layer, equation
(2.11) for the leading-order perturbation takes the form

d2

dz̃2

[
d2

dz̃2
− 1− λ̃

]
ui0 =

d2

dz̃2
(e−z̃wio).

Upon twofold integration, the above equation transforms into[
d2

dz̃2
− 1− λ̃

]
ui0 = e−z̃wio − (1 + λ̃)(Ei

0 + Fi0z̃), (3.9)

where Ei
0 and Fi0 are constants of integration. Boundedness of the solution implies

Fi0 = 0. A general solution of this equation is

ui0(z̃) = Ei
0 + Gi0e

−z̃γi + ui0,p(z̃),

where

ui0,p(z̃) =
1

γi

∫ z̃

sinh (γi(z̃ − τ))e−τwio(τ) dτ.

The free-slip condition ui0
′(0) = 0 gives Gi0 = γ−1

i u
i
0,p
′ (0). Because of equation (3.9) the

second boundary condition (2.16) is satisfied automatically. Hence the constant Ei
0

remains undetermined by the leading-order solution. Matching of the outer and the
Hartmann layer solutions yields Bi0 = Ei

0. The corresponding composite solution is

u0(z̃) = ui0(z̃)− Ei
0 + uo0(z̃o).

To determine the integration constant Ei
0, we have to consider the next-order pertur-

bation of the longitudinal velocity which is governed by the equation

d2

dz̃2

[
d2

dz̃2
− 1− λ̃

]
ui1 =

d2

dz̃2
(e−z̃wio) + k̆2

[
d2u0

dz̃2
+ u0 − (1 + λ̃)uo0

]
and must satisfy the boundary condition

ui1
′ =

[
d2

dz̃2
− 1− λ̃

]
ui1
′
+ e−z̃wi1

′
= 0 on z̃ = 0.

Solvability of this problem imposes an additional constraint resulting from the inte-
gration of the above equation over the depth of the layer∫ ∞

0

(u0(z̃)− (1 + λ̃)uo0(z̃o)) dz̃ = 0,

which yields Ei
0 = Pr1/2Ei

1/2, where Ei
1/2 = −γoγi/(λ̃(1 + λ̃)(1 + γi)). The perturbation

of the longitudinal velocity in the bulk of the layer compared to that in the Hartmann



Hydrothermal wave instability in a transverse magnetic field 223

layer is a next-order small quantity ∼ Pr1/2 which because it occurs over a large depth
∼ Pr−1/2 advects as much heat as the leading-order perturbation in much thinner
Hartmann layer. Thus, for the temperature perturbation, both contributions are
equally significant.

For the leading-order temperature perturbation in the outer region equation (2.12)
takes the form [

d2

dz̃2
o

− k̆2 − λ̃
]
To

0 = −uo1/2(z̃o),
where uo1/2(z̃o) = Pr−1/2uo0(z̃o). A bounded solution of this equation is

To
0 (z̃o) = Ho

0 e−z̃oγt + θo0(z̃o),

where

θo0(z̃o) = − 1

γt

∫ z̃o

sinh (γt(z̃o − τ))uo1/2(τ) dτ.

is the particular solution of the non-homogeneous problem and Ho
0 is an unknown

constant; γt = (k̆2 + λ̃)1/2.
In the Hartmann layer, the leading order temperature perturbation is governed by

d2T i
0

dz̃2
= −Pr1/2ui0(z̃),

whose solution satisfying adiabatic boundary condition T i
0
′
(0) = 0 is

T i
0(z̃) = Hi

0 + Pr1/2θi0(z̃),

where

θi0(z̃) = −
∫ z̃

0

(z̃ − τ)ui0(τ) dτ.

Matching of the bulk and the Hartmann layer temperature perturbations gives
Hi

0 = Ho
0 + θo0(0). Matching the heat flux leaving the Hartmann layer with that

entering the bulk of the layer, we find the last unknown coefficient

Ho
0 =

1

γt
(θo0
′(0)− θi0′(∞)).

Upon substituting the solution found into the stress balance condition (2.13), we
obtain the marginal Reynolds number

R̆e = k̆−1

(
−w

i
0
′′
(0)

T i
0(0)

)1/2

= k̆−1γi

(
Ei

1/2

γt(γt + γo)
− 1

γtγi(1 + γi)

)−1/2

,

where the frequency of neutrally stable waves is defined by the equation Im [R̆e] = 0
which is to be solved numerically. The marginal Reynolds number and the associated
frequency found from the above relations are plotted in figure 5. The minimum of
the marginal Reynolds number R̆ec = 5.4 is found numerically to occur at the critical

wavenumber k̆c = 1.918. The corresponding critical frequency is ω̃c = 5.43. As is
shown in figure 4 (asymptotic 1), this leading-order solution closely approaches that
of the Hartmann-layer mode at Pr . 10−2 which is a typical value for liquid metals
and semiconductor melts.

Besides, it is seen in figure 4 that at small Prandtl numbers the Hartmann-layer
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Figure 5. Rescaled marginal Marangoni number and rescaled frequency of the longitudinal waves
(kx = 0) versus rescaled wavenumber for the Hartmann-layer mode at Pr � 1.

approximation breaks down leading to results which considerably deviate from the
exact solution. The larger the Hartmann number, the smaller the Prandtl number
at which the breakdown of the Hartmann-layer approximation occurs. After the
breakdown, the instability begins to depend on the thermal properties of the bottom.
This happens when the thermal relaxation time over the depth of the layer ∼Pr
becomes comparable to the period of oscillations of the Hartmann-layer mode∼Ha−2.
Thus the breakdown occurs at Ha∼Pr−1/2 where a transition to an instability mode
extending over the whole depth of the liquid layer takes place. Details of this transition
depend on the particular thermal boundary conditions at the bottom of the layer.
For instance, when the bottom is insulating, the transition proceeds with a jump of
the critical wavenumber and frequency (see figures 3 and 4). As is seen in figure 2(a),
the jump is related to a pair of local minima developing on the neutral curve with
increase of the Hartmann number. At sufficiently high Hartmann numbers, the neutral
curve splits into two disconnected branches. At sufficiently small wavenumbers there
can be up to three different neutrally stable modes. A jump of the most dangerous
instability mode occurs with increase of the Hartmann number as the first local
minimum of the neutral curve rises above the second one. For Pr = 0.01 plotted
in figure 2, this transition occurs at Ha = 17.8. Patterns of the critical perturbation
for the corresponding instability modes are shown in figure 6. As is seen, besides
the wavelength, the principal difference between the two modes is in the distribution
of the temperature perturbation over the depth of the layer. With increase of Ha
two instability modes merge together and the detached branch vanishes. This will be
analysed in detail in the following subsection.

3.2. Longitudinal finite-depth mode for an insulating bottom

Outside the range of validity of the Hartmann-layer approximation the instability
can also be characterized by certain scaling relations. These relations are obtained
directly from the asymptotic solution whose details are presented in the Appendix,
§A.1.

According to the numerical results, for an insulating bottom there are two different
instability modes extending over the whole depth of the layer. The leading-order
asymptotic solution obtained in §A.1.1 for the first one, whose critical frequency is
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Figure 6. Streamlines (a), isotachs of longitudinal velocity (b) and isotherms (c) of the critical
longitudinal wave perturbation travelling to the right at Pr = 0.01 and Ha = 17.8 for low-frequency
(left) and intermediate-frequency modes (right).

much lower than the inverse thermal relaxation time over the depth of the layer
ω � Pr−1, yields the critical wavenumber

kc =
(

4
3

)1/4
Pr1/2Ha3/4. (3.10)

Note that for Ha � Pr−1/2 the critical wavelength is much longer than the depth
of the layer in accordance with the assumption used to obtain this solution. The
leading-order critical frequency and the corresponding Reynolds number defined by
equations (A 5) and (A 6) are

ωc = 3
2
Ha7/4, Rec =

(
8

3

Ha5

Pr

)1/2

. (3.11)

The above solution (asymptotic 2) together with the exact results are plotted in
figures 3 and 4 for Pr = 10−4 and Ha = 100, respectively. As is seen in figure 4 at
small Prandtl numbers, this asymptotic solution closely approaches the corresponding
exact solution. However, at larger Prandtl numbers, close to the breakdown of the
Hartmann-layer approximation, there is a regular divergence between the asymptotic
and exact solutions. This implies that the finite time of thermal relaxation over the
depth of the layer, which was neglected in the previous approximation, may be
important right after the Hartmann-layer mode breaks down.

The asymptotic solution for this instability mode is obtained in §A.1.2 by assuming
the period of neutrally stable oscillations to be considerably shorter than the thermal
relaxation time over the whole liquid layer but still much longer than the viscous
relaxation time over the Hartmann layer that in terms of frequency is Pr−1 � ω �
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conditions. The asymptotic solution Ha = ( 7
5
)5/3Pr−2/3 is obtained in §A.1.2.

Ha2. The leading-order marginal Reynolds number supplied by this solution is

Re ≈ √2Ha3/2ω

k
=
√

2Ha5/2Pr−1/2

(
7

4
−
(

Prω

2

)1/2

−Ha3 ω−2

)−1/2

. (3.12)

The critical frequency ωc, at which the marginal Reynolds number attains its mini-
mum, is defined by dRe/dω = 0 yielding

ωc = 2

(
Ha6

Pr

)1/5

. (3.13)

As is seen in figure 3(c) (asymptotic 3), the above result is not only in qualitative, but
also in surprisingly good quantitative agreement with the exact solution. In contrast
to this, for the critical Reynolds number and wavenumber defined by equations (A 8)
and (3.12) there are noticeable offsets between the exact and asymptotic solutions seen
in figures 3(a, b) and 4(a, b) (asymptotic 3). Despite the offset, the asymptotic solution
clearly reproduces the principal feature of the exact solution, namely the singularity
of the critical wavenumber and the Reynolds number developing at Ha ∼ Pr−2/3. At
this point, the critical wavenumber tends to zero while the Reynolds number goes to
infinity. So the finite-depth instability disappears and the most dangerous instability
switches to the Hartmann-layer mode.

Although the previous results suggest that for sufficiently small Prandtl numbers this
transition occurs at Ha ∼ Pr−1/2, for moderately small Pr the scaling of the Hartmann
number at which the transition takes place is very close to ∼ Pr−2/3 (see figure 7). It
may be seen in figure 4(a, b) that the effect of the singularity diminishes with decrease
of the Prandtl number. As a result, direct transition from the Hartmann-layer to the
low-frequency mode, which can be estimated by comparing the corresponding critical
Reynolds numbers to occur at Ha2 = 10.9Pr−1/2, takes place when Ha∗ & Ha2. Thus
the small-Prandtl-number scaling is anticipated at Pr . 10−5 which is far too small
to be of practical significance.
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3.3. Longitudinal finite-depth mode for a conducting bottom

The bottom of the layer is expected to begin to affect the instability occurring at
the free surface when the characteristic thermal relaxation time over the depth of the
layer becomes comparable to the period of oscillations. According to the Hartmann-
layer model considered above, this happens at sufficiently small Prandtl numbers
Pr ∼ Ha−2. Note that at this point the critical wavelength of the Hartmann-layer
mode becomes comparable to the depth of the layer kc ∼ 1. According to equation
(2.12), at wavelengths larger than the layer depth, the temperature disturbance is
dominated by the vertical heat flux over the depth of the layer. The latter being
independent of the wavelength leads to the magnitude of the temperature perturbation
being such as well. This results in a critical wavelength comparable to the layer depth
as it does for the corresponding case without a magnetic field (Priede & Gerbeth
1997b). Scalings of the Marangoni number and the associated frequency can be
estimated from the following order-of-magnitude considerations which will be carried
out in terms of the Hartmann-layer variables.

The thermal relaxation time over the depth of layer becoming shorter than the
viscous relaxation time of the Hartmann layer leads to an increase of the frequency of
neutrally stable oscillations. So the frequency becomes larger than the inverse viscous
relaxation time over the Hartmann layer. Similarly to when there is no magnetic field,
this leads to the development of an oscillatory boundary layer of thickness ω̃−1/2 within
the Hartmann layer at the free surface. As a result, the shear stress at the free surface
becomes dominated by the oscillatory boundary layer rather than the Hartmann layer
ŵ′′(0) ∼ iŵ0. Perturbation of the longitudinal velocity in the Hartmann layer is deter-
mined by the balance of inertia on one side and advection of momentum of the basic
flow by perturbation of the vertical velocity on the other side iω̃0û0 ∼ R̃eŵ0. Perturba-
tion of the longitudinal velocity in the oscillatory boundary layer, which is driven by
shear stress due to the flow in the Hartmann layer, has the same order of magnitude as
in the Hartmann layer. However, the inertia of the viscous boundary layer causes this
perturbation to be delayed in phase by π/2, i.e., iû1 ∼ û0 (Priede & Gerbeth 1997b).
The last relation needed to define the magnitude of the temperature perturbation is
obtained by considering equation (2.12) in the integral over the depth of the layer

(Ha−2Pr−1 + iω̃0)T̂ 0 ∼ Ha−1(û0 + ω̃
−1/2
0 û1).

Combination of the relations obtained above leads to the following order-of-magnitude
analogue of the dispersion relation:

ω̃2
0(1 + iω̃

−1/2
0 )(Ha−2Pr−1 + iω̃0) ∼ Ha−3R̃e2.

The imaginary part of the dispersion relation gives the frequency of neutrally stable
waves in the original dimensionless terms as ω0 ∼ (Ha/Pr)2/3. The corresponding
critical Reynolds number resulting from the real part of the above dispersion relation
is Rec ∼ (Ha/Pr)7/6. This estimate suggests that, in contrast to the case of adia-
batic boundaries, the critical Marangoni number increases slower with the Hartmann
number in the finite-depth mode than in the Hartmann-layer mode. Note that the
dependence of the critical parameters on the Prandtl number is the same as without
the magnetic field (Priede & Gerbeth 1997b).

The corresponding asymptotic solution, whose details are given in the Appendix,
§A.2, yields the critical Reynolds number Rec = 3.18(Ha/Pr)7/6 occurring at the
critical wavenumber kc = 1.44. The corresponding frequency is ωc = 3.62(Ha/Pr)2/3.
The critical Marangoni number and wavenumber are seen in figures 4(a) and 4(b)
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(asymptotic 4) to be close to the corresponding numerical results, which confirms the
accuracy of the asymptotic solution found.

4. The oblique waves
Like the case without a magnetic field, for small-Prandtl-number liquids the most

unstable disturbances are not strictly longitudinal, but rather slightly oblique. Nu-
merically found critical Marangoni numbers and the angles between the x-axis and
the wave vectors of the most unstable oblique waves for various Prandtl numbers are
plotted in figures 8(a) and 8(b) versus the Hartmann number. As is seen, increase of
the magnetic field results in a monotonic increase of the critical Marangoni number.
As for the longitudinal waves, in a sufficiently strong magnetic field the instability
ceases to depend on the thermal properties of the bottom, and the critical Marangoni
number becomes ∼Ha2. As discussed above, this is due to the instability of the
Hartmann layer at the free surface. To investigate this instability mode in more detail
it is useful to rescale all the variables by taking the thickness of the Hartmann layer
as the characteristic length scale as was done for longitudinal waves above. The
advantage of the rescaling is in the elimination of the Hartmann number from the
rescaled problem which remains dependent only on the Prandtl number. Note that
the magnitude of the Hartmann number necessary for validity of this approximation
depends on the Prandtl number. The rescaled problem like the original one is solved
numerically with the difference that now the layer is treated as effectively unbounded
in depth.

The rescaled critical parameters of the most unstable oblique wave along with
those supplied by the Hartmann-layer approximation are plotted versus the Prandtl
number in figure 9. With increase of the Hartmann number the exact solution clearly
approaches the Hartmann-layer mode. As expected, development of the Hartmann-
layer mode depends not only on the Hartmann number, but also on the Prandtl
number. The smaller the Prandtl number, the higher the Hartmann number at
which the Hartmann-layer mode becomes the most dangerous one. For sufficiently
small Prandtl number the most dangerous instability mode depends on the thermal
properties of the bottom. As for longitudinal waves, the breakdown of the Hartmann-
layer mode proceeds with a jump of the critical wave vector and frequency when the
bottom of the layer is thermally insulating. The transition in the most unstable mode
is continuous when the bottom is a good conductor. In contrast to the longitudinal
waves, now the Hartmann number necessary for the Hartmann-layer mode to be the
most dangerous one is about an order of magnitude larger (see figure 7a).

4.1. Small-Prandtl-number asymptotics of the Hartmann-layer mode

The Hartmann-layer approximation can be further simplified by considering the
Prandtl number to be small. Actually, the Prandtl numbers for liquid metals or
molten semiconductors are indeed small ∼ 10−2. This fact can be employed to solve
the problem asymptotically similarly to that for the longitudinal waves. Such an
approach is expected to yield simple expressions for the critical parameters applicable
at sufficiently small Prandtl and large Hartmann numbers. Once the asymptotic
solutions are found, their range of validity can be estimated.

There are two important facts of use in the asymptotic analysis suggested by
the numerical solution. First, at small Prandtl numbers the critical wavelength of
oblique disturbances is considerably longer than the thickness of the Hartmann layer,
implying k̃ � 1. Second, the frequency of neutrally stable waves is comparable to
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Figure 8. Critical Marangoni number (a) and the angle between the direction of the x-axis and the
wave vector of the most unstable oblique wave (b) versus the Hartmann number at various Prandtl

numbers. Asymptotics (1) Mac = 7.86Pr1/2Ha2 and (2) Mac = 1.64Pr1/2Ha9/4 correspond to the
Hartmann-layer and the finite-depth modes considered in §§ 4.1 and 4.2, respectively.

the inverse diffusion time over the wavelength ω ∼ k2. In contrast to the case of the
longitudinal waves, the frequency is much lower than the inverse viscous relaxation
time over the thickness of the Hartmann layer.

The perturbation amplitudes are sought as

{ŵ, û, T̂ } =

∞∑
n=0

εn{wn, k̃yR̃e un, k̃−2PrR̃eTn},

where ε0 = 1 while εn, for n > 1 is an unknown asymptotic series to be found in
the course of the solution. Considering k2 � 1, equation (2.10) for the leading-order
disturbance of the vertical velocity in the Hartmann layer takes the form[

d2

dz̃2
− ik̃xR̃e e−z

] [
d2

dz̃2
− 1

]
wi0 = 0, (4.1)

where R̃e and k̃ are Reynolds number and wavenumber based on the characteristic
thickness of the Hartmann layer. Because in the framework of linear stability analysis
the amplitude of the disturbance is defined up to an arbitrary factor, the temperature
perturbation of the free surface may be rescaled so that the stress balance condition
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Figure 9. The angle between the x-axis and the wave vector of the most unstable oblique wave
(a), the rescaled critical wavenumber (b), and frequency (c) versus the Prandtl number at various
Hartmann numbers. Asymptotics are plotted close to the corresponding numerical results.

(2.13) takes the form

wi0
′′(0) = 1, (4.2)

whereas the other boundary condition is wi0(0) = 0. Although the above problem
admits an analytic solution involving integrals of the Bessel functions, we solve it
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numerically by a tau spectral method employing Chebyshev polynomials with an
exponential mapping of the semi-infinite interval (Canuto et al. 1988).

Comparing the terms dominating in equations (2.10), (2.11) outside the Hartmann
layer, it follows that disturbances extend into the underlying liquid up to the distance
proportional to the square of their wavelength ∼ k̃−2. This is the range at which
disturbances with a characteristic width across the magnetic flux lines increasing as
square root of the distance along the flux lines merge together and thus smooth out.
Outside the Hartmann layer, we introduce a contracted outer coordinate: z̃o = k̃2z̃ in
terms of which equation (2.10) takes the form[

d2

dz̃2
o

− 1− λ̆
]
wo0 = 0,

where

λ̆ = λ̃/k̃2 (4.3)

is the rescaled frequency. The bounded solution of this equation matching the
Hartmann layer solution may be written as wo0(z̃o) = wi0(∞)e−z̃oγo . The com-
posite leading-order solution valid in the whole layer may be constructed as
w0(z̃) = wi0(z̃) + wo0(z̃o)− wi0(∞).

Now we can proceed to the leading-order solution for the perturbation of the
longitudinal velocity. To simplify the matching of the solution it is advantageous to
rewrite equation (2.11) as a system of two equations involving the vertical component
of the induced current ĵ (Priede & Gerbeth 1997a):[

D2 − λ] û− ikxūû− kyū′ŵ + iHa(ez ·D)ĵ = 0, (4.4)

iHa(ez ·D)û = D2ĵ. (4.5)

Use of ĵ in matching Hartmann-layer and outer-region solutions allows us to find a
unique leading-order solution without resorting to the solvability conditions for the
higher-order approximations as it was necessary above. Besides, it is advantageous to
divide the solution into the Hartmann-layer contribution ui0(z̃) and outer-region one
uon(z̃o):

un = uin(z̃) + uon(z̃o).

This partition is uniquely defined by requiring uin(∞) = 0. For the Hartmann layer,
equation (4.5) takes the form

d2ji0
dz̃2

= −i
dui0
dz̃

,

whose solution satisfying the boundary condition ji0(0) = 0 is

ji0(z̃) = −i

∫ z̃

0

(ui0(τ)− Ei
0) dτ, (4.6)

where Ei
0 is an unknown constant to be determined from the boundary conditions

for ui0. Upon substitution of the above solution into equation (4.4), we obtain for the
leading-order perturbation in the Hartmann layer[

d2

dz̃2
− 1

]
ui0 − ikxR̃e e−z̃(ui0(z̃) + uo0(0)) = e−z̃wi0 − Ei

0. (4.7)

The condition uin(∞) = 0 applied to this equation yields Ei
0 = 0. To solve the above
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equation we need first to define uo0(0) in terms of ui0. This can be done by considering
the outer region where equations (4.4), (4.5) take the form

(1 + λ̃)uo0 + i
djo0
dz̃o

= 0, (4.8)

jo0 − i
duo0
dz̃o

= 0. (4.9)

The bounded solution for the longitudinal velocity is found as uo0(z̃o) = Bo0e−γoz̃ .
Matching of the electric current between the outer region and the Hartmann layer,
defined by equations (4.9), (4.6), respectively, yields the relation

Bo0 = γ−1
o

∫ ∞
0

ui0(z̃) dz̃, (4.10)

which allows us to eliminate uo0(0) = Bo0 from the equation (4.7) and thus to complete
the formulation of the problem for perturbation of the longitudinal velocity in the
Hartmann layer:[

d2

dz̃2
− 1

]
ui0 − ikxR̃e e−z̃

[
ui0(z̃) + γ−1

o

∫ ∞
0

ui0(z̃) dz̃

]
= −e−z̃wi0. (4.11)

Solution of this integro-differential equation satisfying the boundary condition
ui0
′
(0) = 0 is found numerically like that of equation (4.1).
Now it remains to find the leading-order temperature perturbation for which

equation (2.12) in the Hartmann layer takes the form d2T i
0/dz̃

2 = 0. The bounded
solution of this equation satisfying the adiabatic boundary condition at the free
surface is constant: T i

0(z̃) = Ci
0. In the outer region, the temperature disturbance is

determined only by heat diffusion. It means that the characteristic distance of variation
of temperature is comparable to the wavelength of the disturbance. Therefore, to find
the distribution of the temperature disturbance in the outer region it is useful to
introduce another contracted coordinate z̃t = kz̃, in terms of which equation (2.12)
for the leading-order temperature perturbation takes the form[

d2

dz̃2
t

− 1

]
To

0 = −Bo0 sin2(α),

A solution of this equation matching with that of the Hartmann layer is To
0 (z̃) =

Bo0 sin2(α). Substituting this solution into the stress balance condition (2.13) and taking
into account the additionally imposed scaling condition (4.2) we obtain

PrR̃e
2
Bo0 sin2(α)− 1 = 0. (4.12)

This is a complex equation defining the leading-order marginal Reynolds number
and the frequency of neutrally stable waves as function of wavenumber k and the
direction of the wave vector with respect to the x-axis specified by the angle α. The
critical Reynolds number at which the first neutrally stable disturbance appears is
given by a minimum value of the marginal Reynolds number. Before proceeding to
the solution of the above equation it is worth noting that both the Prandtl number
and the angle α can be eliminated from the set of equations (4.1), (4.11), and (4.12)
by rescaling the Reynolds number and streamwise wavenumber as

R̃e = R̆e/(Pr1/2 sin (α)), (4.13)
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Figure 10. Leading-order rescaled marginal Marangoni number and rescaled frequency of the
oblique wave mode versus rescaled streamwise wavenumber for the Hartmann-layer instability at
Pr � 1.

k̃x = k̆xPr1/2 sin (α). (4.14)

Thus R̆e is a function only of k̆x. Then it follows from equation (4.13) that the
leading-order marginal Reynolds number attains its minimum at αc = π/2. It means
that with a decrease of the Prandtl number the most dangerous oblique waves tend
to become almost longitudinal. The corresponding leading order critical Reynolds
number and corresponding streamwise wavenumber are

R̃ec = Pr−1/2R̆ec, k̃x,c = Pr1/2k̆x,c.

The leading-order rescaled marginal Reynolds number and the corresponding fre-
quency versus the rescaled streamwise wavenumber are plotted in figure 10. Accord-
ing to this solution the critical rescaled Reynolds number R̆ec = 7.86 is attained at

k̆x,c = 0.716. The corresponding rescaled frequency is ω̆ = 1.91. It may be seen in fig-
ure 8(a) that the above solution (asymptotic 1) closely approaches the corresponding
critical Marangoni number for such moderate values as Ha & 10 and Pr . 0.1.

Note that the leading-order solution obtained above gives only the streamwise com-
ponent of the critical wave vector while the magnitude and the direction of the wave
vector are left undetermined. The same holds also for the critical frequency defined
through the wavenumber by equation (4.3). To determine the critical wavenumber
it is necessary to consider the next order asymptotic solution. For this purpose first
we need to assess its order of magnitude. The next-order correction will partly be
due to the terms ∼ k̃2 which were neglected in equations (2.10) and (2.11) in obtain-
ing the leading-order solution. Note that this correction is related to the reduction
of the wavelength as α → π/2 while the streamwise wavenumber remains fixed.
This effect is expected to cause an increase of the marginal Reynolds number by
∼ k̃2R̃e ∼ k̃2

xα̃
−2R̃e, where α̃ = π/2 − α. On the other hand, it follows from equation

(4.13) that the leading-order marginal Reynolds number decreases by ∼ α̃2R̃e as
the oblique mode approaches the longitudinal one. Consequently, increment of the
marginal Reynolds number due to both effects will be minimal at α̃2 ∼ k̃2

xα̃
−2 yielding

α̃c ∼ k̃1/2
x ∼ Pr1/4 and k̃c ∼ k̃x/α̃c ∼ Pr1/4.

To find the next-order correction ∼ ε1 ∼ k̃2 ∼ Pr1/2 we rescale the wavenumber
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and the angle in accordance with the above estimates as k̃ = Pr1/4k̆ and α = π/2 −
Pr1/4ᾰ, respectively, and expand the Reynolds number and frequency as {R̆e, λ̆} =∑∞

n=0 εn{R̆en, λ̆n}. Then equation (2.10) for the first order correction of the vertical
velocity in the Hartmann layer takes the form[

d2

dz̃2
− ik̆0,xR̆e0e

−z
] [

d2

dz̃2
− 1

]
wi1 = k̆2((2 + λ̆0)

d2wi0
dz̃2

−ik̆0,xR̆e0e
−z(wi0(z̃) + z̃wo0

′(0))) + ik̆0,xR̆e1e
−z
[

d2

dz̃2
− 1

]
wi0, (4.15)

whereas the boundary conditions are wi1(0) = wi1
′′
(0) = 0. In the outer region, the

corresponding equation is[
d2

dz̃2
o

− 1− λ̆
]
wo1 = −(2 + λ̆0)(1 + λ̆)wo0(z̃o),

whose solution matching the Hartmann layer perturbation is

wo1(z̃o) = (wi1(∞) + z̃ow
i
0(∞)(2 + λ̆0)(1 + λ̆)/(2γo))e

−γoz̃o .

Having found the first-order perturbation of the vertical velocity, we use it further
to obtain the corresponding solution for the longitudinal velocity. Equation (4.5) for
the first-order perturbation in the Hartmann layer takes the form

d2ji1
dz̃2

= −i
dui1
dz̃

+ ji0(z̃)− ji0(∞),

whose bounded solution satisfying ji1(0) = 0 can be obtained as

ji1(z̃) = −i

∫ z̃

0

(ui1(τ)− Ei
1) dτ+

∫ z̃

0

∫ τ

∞
(ji0(ξ)− ji0(∞)) dξ dτ. (4.16)

As for the analogous leading-order solution considered above, the condition ui1(∞) = 0
implies Ei

1 = 0. Equations (2.11) and (4.5) for the first-order corrections in the outer
region are

(1 + λ̆0)u
o
1 + i

djo1
dz̃o

= k̆2 d2uo0
dz̃2

o

− λ̆1u
o
0(z̃o), (4.17)

jo1 − i
duo1
dz̃o

= k̆2 d2jo0
dz̃2

o

. (4.18)

The solution of these equations for the longitudinal velocity correction may be written
as

uo1(z̃o) = (Bo1 + z̃oB
o
0(k̆2(2 + λ̆0)(1 + λ̆0)− λ̆1)/(2γo))e

−γoz̃o .
Matching the vertical electric current correction in the outer region with that in the
Hartmann layer defined by equations (4.18) and (4.16), respectively, we obtain

Bo1 = γ−1
o

∫ ∞
0

(ui1(z̃)− ik̆2z̃(ji0(z̃)− ji0(∞))) dz̃ − Bo0
2

(
k̆2λ̆0 +

λ̆1

1 + λ̆0

)
.

Substituting solution (4.16) into equation (2.11) and making use of the above relation
we obtain the following equation for the first-order correction of the longitudinal
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velocity in the Hartmann layer[
d2

dz̃2
− 1

]
ui1 − ik̆xR̆e e−z̃

[
ui1(z̃) + γ−1

o

∫ ∞
0

ui1(z̃) dz̃

]
= k̆2(e−z̃(wi1(z̃) + z̃wo0

′(0)) + i

∫ z̃

∞
(ji0(τ)− ji0(∞)) dτ+ (1 + λ̆0)u

i
0(z̃))

−ik̆0,xR̆e0e
−z̃
(

ik̆2γ−1
o

∫ ∞
0

z̃(ji0(z̃)− ji0(∞)) dz̃ − k̆2z̃uo0
′(0)

+
Bo0
2

(
k̆2λ̆0 +

λ̆1

1 + λ̆0

))
+ ik̆0,xR̆e1e

−z̃(ui0(z̃) + Bo0). (4.19)

The corresponding boundary condition takes the form ui1
′
(0) = k̆2γoB

o
0 . This completes

the formulation of the problem for the first-order perturbation of the longitudinal
velocity which is solved numerically.

Now we can proceed to the first order temperature perturbation governed in the
Hartmann layer by

d2T i
1

dz̃2
= −k̆2ui0(z̃) + iPr1/2k̆0,x(R̆e0Pr e−z̃Bo0 + R̆e−1

0 wi0
′
(z̃)).

The solution of this equation satisfying the adiabatic boundary condition T i
1
′
(0) = 0

is

T i
1(z̃) = Ci

1 −
∫ z̃

0

(z − τ)(k̆2ui0(τ)− iPr1/2k̆0,x(R̆e0Pr e−τBo0 + R̆e−1
0 wi0

′
(τ)) dτ,

where Ci
1 is an unknown constant to be determined by matching the Hartmann

layer and outer region solutions. In the outer region, the temperature perturbation is
governed by [

d2

dz̃2
t

− 1

]
To

1 = −Bo1 + k̆2Bo0 z̃.

A bounded solution of the above equation may be written as

To
1 (z̃) = Co

1 exp (−Pr1/4k̆z̃) + Bo1 − k̆2Bo0 z̃.

Upon matching both solutions, we obtain the first order perturbation of the surface
temperature

T i
1(0) = Ci

1 = Co
1 − k̆2

∫ ∞
0

z̃ui0(z̃) dz̃, (4.20)

where Co
1 = −Bo1 + cos (α)(Bo0R̆e0 + wi0(∞)/R̆e0). Using the representation

Bo1 = k̆2Bo1,k + λ̆1B
o
1,ω + R̆e1B

o
1,R,

we find from the stress balance condition

R̃e1 = R̃e0

(
1
2
ᾰ2 − k̆2B̃

o

1,k + λ̆1B
o
1,ω + Pr1/4ᾰBo1,α

2Bo0 + R̆e0B
o
1,R

)
, (4.21)

where B̃
o

1,k = Bo1,k +
∫ ∞

0
z̃ui0(z̃) dz̃ and Bo1,α = (Bo0R̆e0 + wi0(∞)/R̆e0). The frequency

correction follows from the requirement that the Reynolds number must be a real
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quantity Re [R̃e1] = 0:

ω̆1 = −Im

[
k̆2B̃

o

1,k + Pr1/4ᾰBo1,α

2Bo0 + Re0B
o
1,R

]/
Re

[
Bo1,ω

2Bo0 + R̆e0B
o
1,R

]
= k̆2ω̆1,k + Pr1/4ᾰω̆1,α.

Taking into account that k̆2 = k̆x
2ᾰ−2 the critical angle defined by dR̆e1/dᾰ = 0 is

ᾰc = k̆1/2
x,c

(
−2

B̃
o

1,k + iω̆1,k

2Bo0 + R̆e0B
o
1,R

)1/4

+ Pr1/4 1

4

B̃o1,α + iω̆1,α

2Bo0 + R̆e0B
o
1,R

= 1.316 + Pr1/41.72.

Note that the last term O(Pr1/4) in the above expression represents the next-order
small correction which is still significant at Pr ∼ 10−3 where the asymptotic solution
found begins to approach the corresponding numerical solution (see figure 9a). The
critical wavelength defined by k̃c = k̃x,c/ᾰc is plotted in figure 9(b) next to the
corresponding numerical solution.

According to the solution obtained, flow disturbances extend from the free surface
into the underlying liquid layer at the distance ∼ k−2

c ∼ Pr1/2/Ha . Thus, for the
disturbances to decay before they encounter the bottom of the layer, the magnetic
field must be strong enough such that Ha � Pr−1/2. This is the condition required
for the applicability of the Hartmann-layer model considered above.

4.2. Oblique finite-depth mode for an insulating bottom

Numerical solution of the complete problem indicates that for the Hartmann-layer
mode to become the most dangerous one at small Prandtl numbers a strong magnetic
field may be necessary. For instance, at Pr ∼ 10−2, Ha ∼ 102 is required (see figures 7a
and 9a–c). It means that in strong magnetic fields Ha � 1 but at sufficiently small
Prandtl numbers the most unstable are instability modes extending over the whole
depth of the layer. In this section, such an instability mode will be considered for the
case of a thermally insulating bottom of the layer.

To simplify the analysis we again exploit a couple of useful facts suggested by the
numerical solution of the full problem. First, the numerical solution indicates that the
critical wavelength is considerably longer than the depth of the layer: k � 1. Second,
the critical frequency is found to be much lower than the inverse viscous relaxation
time over the thickness of the Hartmann layer but much higher than the same time
over the depth of the layer: 1� ω � Ha2.

In order to use the results of the previous section, we shall employ the Hartmann-
layer variables here also. The leading-order perturbation of the vertical velocity in
the Hartmann layer at the free surface is governed by the same equation (4.1) as for
the Hartmann-layer mode considered above. It is easy to find that the corresponding
leading order solution in the Hartmann layer at the bottom is trivial: w−0 (z−) ≡ 0.
Then the solution for the bulk of the layer, for which equation (2.10) turns to
d2wo0/dz

2 = 0, is wo0(z) = wi0(∞)(1/2 + z).
Now we proceed to the leading-order perturbation of the longitudinal velocity

which is governed in the Hartmann layer at the free surface by equation (4.11). In the
Hartmann layer at the bottom, where the coordinate is stretched as z− = Ha(1/2+z),
equation (4.5) becomes

d2j−0
dz2−

= i
du−0
dz−

.
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The solution of the above equation satisfying the boundary condition j−0 (0) = 0 is

j−0 (z−) = i

∫ z−

0

(u−0 (τ)− E−0 ) dτ.

Upon substituting the above result into equation (2.11), we obtain[
d2

dz2−
− 1

]
u−0 = −E−0 ,

whose solution satisfying the no-slip condition at the bottom u−0 (0) = 0 is

u−0 (z−) = E−0 (1− e−z−).

In the bulk of the layer, equations (2.11) and (4.5) take the form

Ha λ̃uo0 = i
djo0
dz

, iHa
duo0
dz

=
d2jo0
dz2

.

The solution of the above equations is uo0(z) = Bo0 and jo0 (z) = −iHa λ̃(Bo0 + Co
0 ).

After matching the core velocity perturbation with that in the Hartmann layer at
the bottom, we find E−0 = Bo0 . Matching of the corresponding current perturbations

j−0 (∞) = −iBo0 = jo0 (− 1
2
) yields Co

0 = Bo0( 1
2

+ Ha−1λ̃−1). Finally, matching the core
electric current perturbation with that of the Hartmann layer at the free surface
ji0(∞) = −i

∫ ∞
0
ui0(z̃) dz̃ = jo0 ( 1

2
) leads to

Bo0 = (Ha λ̃+ 1)−1

∫ ∞
0

ui0(z̃) dz̃. (4.22)

Thus the perturbation of the longitudinal velocity in the bulk of the layer and in
the Hartmann layer at the bottom is completely related to the perturbation in the
Hartmann layer at the free surface.

Now it remains to find the temperature perturbation. For insulating boundaries,
it is useful to search for the temperature perturbation in the form of the following
power series of the Prandtl number: T0 =

∑∞
m=0 Prm−1T0,m. Then the equation for

the leading-order term of the above series takes the form d2T0,0/dz
2 = 0. Solution of

this equation satisfying the adiabatic boundary conditions T ′0,0(± 1
2
) = 0 is a constant

which can be determined by considering the problem for the next-order term:

d2T0,1

dz2
= −(iR̃e−1Ha−1 + k̃2

yu0(z)) + Ha2(λ̃+ Pr−1k̃2)T0,0.

Integrating the above equation over the depth of the layer and taking into account
adiabatic boundary conditions T ′0,1(± 1

2
) = 0, we obtain

T0,0 =
Ha−2k̃2

y

λ̃+ Pr−1k̃2

∫ 1/2

−1/2

u0(z) dz.

Upon substituting the above result into the stress balance condition (2.13) and
neglecting the contributions of both Hartmann layers in the above integral, we arrive
at the following dispersion relation:

(λ̃+ Pr−1k̃2)(Ha λ̃+ 1) + (k̃yR̃e)
2

∫ ∞
0

ui0(z̃) dz̃ = 0, (4.23)

which can be solved completely analytically by employing the last important numerical
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implication: k̃xR̃e� 1. Then straightforward but lengthy calculations give∫ ∞
0

ui0(z̃) dz̃ = − 1
2

+ 19
36

ik̃xR̃e− 373
864

(ik̃xR̃e)
2 + 42127

129600
(ik̃xR̃e)

3 + O((ik̃xR̃e)
4). (4.24)

Note that we need all the four terms in the above series to find the leading-order
solution of the stability problem under consideration. Before we proceed to the
solution, it is worth noting that the Prandtl number can be eliminated from the
problem by rescaling the wavenumber and the Reynolds number as follows:

k̃ = Pr1/2k̆, R̃e = Pr−1/2R̆e.

The leading-order critical Reynolds number can be found by taking the first two
terms of series (4.24). From the leading-order real and imaginary parts of the stress
balance condition (4.23), we obtain, respectively, the following equations:

Haω̃2
0 = 1

2
(k̆yR̆e0)

2, Haω̃0k̆
2 = 19

36
k̆xk̆

2
yR̆e

3
0,

which yield

R̆e0 = 6(21/2/19)1/2Ha1/4 sin−1/2(2α), (4.25)

ω̆0 = (2Ha)−1/2k̆yR̆e0. (4.26)

According to (4.25), the minimum of the Reynolds number

R̆e0,c = 6(21/2/19)1/2Ha1/4

is attained at the critical angle αc = π/4. This is in good agreement with the
numerically found critical angle plotted in figure 8(b) where the curve for Pr = 10−2

and an insulating bottom closely approaches the critical angle 45◦ at Ha ≈ 200 before
the instability switches to the Hartmann-layer mode. Also the critical Reynolds
number is seen in figure 8(a) (asymptotic 2) to approach the corresponding exact
solution quite well.

The leading-order solution obtained leaves undetermined the critical wavenumber
and so the critical frequency which according to equation (4.26) depends on it. To
determine the critical wavenumber we have to take into account the next-order small
correction to both real and imaginary parts given in the stress balance condition
(4.23) by the third and fourth term of expansion (4.24). After some algebra, the next
order correction to the Reynolds number is found as

R̆e1 = (2R̆e0)
−1
(

75587
410400

Re4
0 cos2(α)k̆2 + Ha−1Re2

0k̆
−2 + sin−2(α)

)
.

The critical wavenumber defined by the condition ∂R̆e1/∂k̆|α=π/4 = 0 is found to be
k̆c = 1.419Ha−3/8. The corresponding critical frequency is ω̃0,c = 1.613Ha−5/8. These
asymptotic solutions are seen in figures 9(b) and 9(c) close to the corresponding
numerical results.

4.3. Oblique finite-depth mode for a conducting bottom

In this case, just as in the previous one, numerical results suggest a critical wavelength
much longer than the characteristic thickness of the Hartmann layer but, conversely
to the previous case, much shorter than the depth of the whole layer: 1 � k � Ha .
The frequency is implied to be lower than the inverse viscous relaxation time over
the Hartmann layer, but higher than the corresponding time over the wavelength:
k2 � ω � Ha2. Upon such assumptions, the solution of the problem proceeds
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identically to the previous case up to the finding of the temperature perturbation. In
this case, the leading-order temperature perturbation is

T0(z) = Ha−2Bo0 sin2(α)(1− cosh−1(k)).

Neglecting the last term above which is exponentially small for k � 1, we arrive at
the same leading-order stress balance condition as in the case of the Hartmann-layer
mode given by equation (4.12). The problem under consideration is almost identical
to that of the Hartmann-layer mode solved above, except for the relation between the
longitudinal velocity perturbation in the bulk of the layer and that in the Hartmann
layer at the free surface. In the case under consideration, this relation is defined
by equation (4.22) instead of equation (4.10) used for the Hartmann-layer mode.
Similarly as for the Hartmann-layer mode, the Prandtl number can be eliminated
by rescaling the Reynolds number and the streamwise wavenumber according to
transformations (4.13) and (4.14). In addition, we can also eliminate the Hartmann
number entering relation (4.22) by rescaling the frequency as ω̃ = Ha−1ω̆. Because in
the case under consideration k̃xRe ∼ 1, the problem is solved numerically similarly
to the Hartmann-layer instability. The calculated leading-order marginal Marangoni
number and the corresponding frequency are plotted versus the rescaled streamwise
wavenumber in figure 11. The critical Marangoni number Mac = 6.26Pr1/2Ha2 is
found to occur at the critical streamwise wavenumber kx,c = 0.54Pr1/2Ha which is
very close to the corresponding value for the Hartmann-layer instability. The critical
frequency resulting from the leading order solution ωc = 3.15Ha turns out to be about
two times smaller than the corresponding numerical result. The discrepancy is due to
the neglected higher-order small term −Re/Ha2 in the basic flow (2.7) accounting for
the return flow in the core of the layer. On one hand, this term represents a next-order
small correction to the basic flow in the Hartmann layer. On the other hand, it is
the dominating one in the core region where the leading term becomes exponentially
small. However, the principal point is that this term being a constant additive to the
basic flow can be eliminated by a proper change of the frame of reference. But this
change has no effect on the stability of the flow. It only changes the relative phase
speed of the disturbance and so the frequency by Ha−2Reckx,c = 3.41Ha . After taking
into account this correction the resulting critical frequency agrees very well with the
corresponding numerical one (see figure 9c).

Similarly to the Hartmann-layer mode, the leading-order solution yields only the
streamwise component of the critical wavenumber while the next-order solution is
necessary to determine the magnitude or the direction of the critical wave vector.
Like the previous case, the next-order perturbation is due to the finite wavelength.
But in this case, the dominating contribution comes from the perturbation of the
longitudinal velocity in the core region

λ̆0u
o
1 − i

djo1
dz−

= −Ha−1k2uo0 − λ̆1u
o
0, (4.27)

i
duo1
dz−

= −Ha−1k2jo0 (z). (4.28)

Thus the next-order perturbation is ∼ Ha−1k2. Note that the corresponding effect in
the Hartmann-layer leads to the correction ∼ k̃2 ∼ Ha−2k2 which is a higher order
small quantity compared to the former. Upon matching the solution of the above
equations to the corresponding Hartmann-layer solutions at the bottom and the free
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Figure 11. Leading-order rescaled marginal Marangoni number and rescaled frequency of the
oblique wave mode versus rescaled streamwise wavenumber for the finite-depth mode at a conducting
bottom and Pr � Ha−2.

surface, we obtain

uo1(
1
2
) =

1

1 + λ̆0

[∫ ∞
0

ui1(τ) dτ+ Bo0(Ha−1k2λ̆0(1 + λ̆0/3)− λ̆1)

]
,

where ui1 is the corresponding perturbation of the longitudinal velocity in the Hart-
mann layer which, as usual, can be found numerically by solving equation (4.7) in
which the core velocity perturbation at the free surface is defined by the above rela-
tion. Eventually, the next-order temperature perturbation of the free surface can be
found as

T1(
1
2
) = Ha−2uo1(

1
2
) = Ha−2(Ha−1k2Bo1,k + λ̆1B

o
1,ω + R̆e1B

o
1,R).

Substituting the above result into the stress balance condition (4.12) and taking into
account a small exponential correction to the leading-order temperature perturbation
we find the next-order correction to the marginal Reynolds number:

R̃e1 = R̃e0

(
1
2
ᾰ2 + e−k − Ha−1k2Bo1,k + λ̆1B

o
1,ω

2Bo0 + R̆e1B
o
1,R

)
.

The constraint Im [R̃e1] = 0 defines the frequency correction

ω̆1 = −Im

[
Ha−1k2B̃

o

1,k

2Bo0 + Re0B
o
1,R

]/
Re

[
Bo1,ω

2Bo0 + R̆e0B
o
1,R

]
= Ha−1k2ω̆1,k .

Taking into account ᾰ = kx/k, the condition dR̃e1/dk = 0 leads to the following
equation defining the critical wavenumber

k2
xk
−3 + e−k + 2Ha−1k

Bo1,k + iω̆1,kB
o
1,ω

2Bo0 + R̆e0B
o
1,R

= 0.

Neglecting the small exponential term, we find the leading-order solution for the
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critical wavenumber

kc,0 =

(
−Hakx,c

2Bo0 + R̆e0B
o
1,R

2(Bo1,k + iω̆1,kB
o
1,ω)

)1/4

= 0.68(PrHa3)1/4.

Since the critical wavenumber reduces with decrease of the Prandtl number, the
exponential term in the above equation becomes significant at sufficiently small
Prandtl numbers. The correction to the critical wavenumber due to the exponential
term is found as

kc,1 =
1

4

k4
c,0

k2
x,c

e−kc,0 = 0.186Ha exp (−0.68(PrHa3)1/4).

With this correction the asymptotic solution for the critical wavenumber as well as the
critical angle of the wave vector are in very good agreement with the corresponding
numerical results (see figures 9a and 9b).

5. Summary and concluding remarks
The present study is concerned with the effect of a transverse magnetic field on

the hydrothermal wave instability of thermocapillary-driven convection in a planar
unbounded layer of an electrically conducting liquid heated from the side. First,
we analyse the linear stability of longitudinal disturbances by making use of an
analytically found dispersion relation. Second, we solve numerically the linear stability
problem for oblique disturbances. Third, we use the information supplied by the
numerical solutions and order-of-magnitude analysis to solve the corresponding linear
stability problems asymptotically considering the Prandtl and Hartmann numbers as
small and large parameters, respectively.

The magnetic field is found to have a stabilizing effect on the hydrothermal waves.
In a sufficiently strong magnetic field, the critical temperature gradient is increased
as the square of the field strength. So the critical frequency increases also while
the critical wavelength decreases inversely with field strength. These relations can be
directly deduced from the effect of the magnetic field on the basic flow which, in a
strong magnetic field, forms a jet at the free surface with a characteristic thickness
∼ Ha−1. Thus the Marangoni number and frequency being proportional to the square
of the characteristic length, both scale as ∼ Ha2, while the wavenumber, being directly
proportional to the characteristic length, scales as ∼ Ha .

The field strength at which these asymptotics become effective depends on the
Prandtl number: the smaller the Prandtl number, the higher the field strength needed.
This is related to the finite depth of the layer which, in addition to the thickness of
the Hartmann layer, becomes a significant length scale at sufficiently small Prandtl
numbers. For instance, longitudinal disturbances extend from the free surface into the
depth of the layer at a distance comparable to the wavelength ∼ Pr−1/2Ha−1 which is
determined by the thermal diffusion time across the wave becoming comparable to the
viscous diffusion time over the Hartmann layer. For the thickness of the Hartmann
layer to be the only relevant length scale, disturbances should decay over a distance
shorter than the depth of the layer which is the case provided Ha � Pr−1/2. Note
that in this case the critical frequency is higher than the inverse thermal diffusion
time over the depth of the layer ∼ Pr−1. Thus the instability is insensitive not only
to the depth of the layer but also to the actual thermal boundary conditions at the
bottom. This changes at Ha ∼ Pr−1/2 where disturbances begin to extend over the
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whole depth. For such instability modes the finite depth of the layer and the particular
thermal boundary conditions at the bottom of the layer play an important role. As a
result, the corresponding dependences of the critical parameters on the field strength
are more complicated than for the instability modes related only to the Hartmann
layer at the free surface.

Like the case without a magnetic field, the most unstable disturbances are oblique
rather than longitudinal. In strong magnetic fields, when the instability is related to
the Hartmann layer, the propagation angle depends solely on the Prandtl number. In
this case the most unstable oblique waves become almost longitudinal at small Prandtl
numbers. The leading-order asymptotic solution for such disturbances yields only the
critical Marangoni number Mac = 7.68Pr1/2Ha2 and the streamwise component of
the critical wavenumber kx,c = 0.716Pr1/2Ha while the critical angle of propagation
αc = π/2−1.316Pr1/4−1.72Pr1/2 is determined by the next-order small effects. Oblique
disturbances extend from the free surface into the depth of the layer over a distance
exceeding the characteristic depth of the Hartmann layer by a factor ∼ k−2

c . Thus
oblique disturbances cover the whole depth of the layer similarly to the longitudinal
ones when Pr ∼ Ha−2. For smaller Prandtl numbers the finite depth of the layer
becomes significant. However, the finite depth has no major effect on the leading-
order asymptotic solutions for the critical Marangoni number Mac = 6.26Pr1/2Ha2

and the critical streamwise wavenumber kx,c = 0.54Pr1/2Ha which are close to the
corresponding values for the Hartmann-layer instability mode. The first significant
difference from the Hartmann-layer mode concerns the critical frequency which in
the latter case is found directly from the leading-order solution. Upon taking into
account a correction due to the higher-order small term in the basic flow the leading-
order critical frequency is found to be ωc = 6.56Ha . Similarly to the Hartmann-layer
mode the critical wavenumber is determined by the solution next to the leading-
order one which yields kc = 0.68(PrHa3)1/4. However, the critical wavelength is still
much shorter than the depth of the layer. Thus only the flow disturbances extend
over the whole depth of the layer while the temperature disturbances, decaying
over a characteristic distance comparable to the wavelength, remain confined at the
free surface. As a result, this instability mode is rather insensitive to the actual
thermal boundary conditions at the bottom of the layer. For instance, a perfectly
conducting bottom gives rise to a higher-order small exponential correction to the
critical wavenumber k1,c = 0.186Ha exp (−0.68(PrHa)1/4). This correction becomes

comparable to the leading-order result at small Prandtl numbers Pr ∼ Ha−3 ln(Ha).
Thus the above asymptotic solution for the finite depth mode at a conducting bottom
turns out to be in good agreement with corresponding numerical results down to
Pr = 10−3 even at such moderate Hartmann numbers as Ha = 10.

In the case of a thermally insulating bottom at sufficiently small Prandtl numbers
the most unstable mode is an oblique finite-depth mode which according to the
leading order asymptotic solution propagates at an angle of 45◦ with respect to the
basic flow. The corresponding critical Marangoni number is Mac = 1.64Pr1/2Ha9/4.
The critical wavenumber kc = 1.42Pr1/2Ha5/8 and the frequency ωc = 1.61Ha11/8

are obtained by considering higher-order asymptotically small terms. This is a long-
wave instability mode which disappears when Pr & Ha−5/4: the critical wavelength
becomes comparable with the depth of the layer, and the instability switches to the
Hartmann-layer mode.

Without a magnetic field, the obliqueness of the most unstable mode at small
Prandtl numbers is related to the hydrodynamic stability of plane Couette flow
(Priede & Gerbeth 1997a). It is well-known that plane Couette flow becomes linearly
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unstable in a transverse magnetic field (Kakutani 1964) and that the Hartmann layer
forming in a strong magnetic field is linearly unstable as well (Lock 1955). Since the
critical Reynolds number for the oblique Hartmann-layer mode increases as ∼ Pr−1/2

one might expect a transverse hydrodynamic instability of the Hartmann layer to
become the most unstable at sufficiently small Prandtl numbers. It turns out that the
linear stability of the Hartmann layer strongly depends on the boundary conditions.
For no-slip boundary conditions we found that the Hartmann layer becomes linearly
unstable at a large but finite critical Reynolds number R̃ec = 48311 in agreement with
Lock (1955). In the case of a free-slip condition which holds for the flow disturbances
at the free surface in the limit of Pr = 0 we found that the Hartmann layer is linearly
stable, like Couette flow without a magnetic field. So the oblique mode remains the
most unstable one at small Prandtl numbers in a strong magnetic field. However, we
cannot exclude hydrodynamic instability due to the surface waves. In the same way as
for the hydrodynamic mode of the Hartmann layer, it follows that the surface-wave
instability, if any, would be the most dangerous mode at sufficiently small Prandtl
numbers as found in the non-magnetic case by Smith & Davis (1983b). No further
conclusions can be drawn about this instability mode in a magnetic field without its
detailed analysis which, however, goes outside the scope of this paper.

In this study we have neglected the effect of buoyancy that under normal gravity
requires the liquid layer to be thin enough. Without a magnetic field the ratio of the
characteristic velocities of buoyancy- and thermocapillary-driven flows is given by the
dynamic Bond number Bo = gαρd2/γ, where g and α are the gravitational accelera-
tion and the volumetric expansion coefficient. For small-Prandtl-number liquids like
common metal and semiconductor melts the effect of buoyancy on the hydrothermal
wave instability is known to remain small up to Bo ∼ 1 (Priede & Gerbeth 1997c)
which restricts the maximal thickness of the layer to several millimetres. A magnetic
field retarding buoyancy- and thermocapillary-driven flows as ∼ Ha−2 and ∼ Ha−1,
respectively, reduces the relative effect of buoyancy as ∼ Bo/Ha (Ben Hadid, Henry
& Kaddeche 1997). Thus for Ha = 30 buoyancy remains negligible up to layer depth
of about 1 cm. For instance on a layer of liquid gallium (Pr = 0.03) of such a
depth Ha = 30 is achieved at the induction of the magnetic field B ≈ 0.075 T. In
this case, according to our theory the most dangerous instability mode is the oblique
finite-depth one. For a thermally insulating bottom wall the instability is expected
to set in at a critical Marangoni number Mac = 937.4 that corresponds to a critical
temperature gradient β = 28.8 K cm−1. For a thermally well conducting bottom we
have, respectively, Mac = 1098.8 and β = 33.7 K cm−1. For the instability to be insen-
sitive to the actual thermal boundary conditions at the bottom of the layer, Ha > 71
corresponding to B > 0.18 T would be required. In this case the flow would become
unstable at Mac > 6300 corresponding to β > 193 K cm−1. According to these results
the hydrothermal wave instability in a magnetic field could be observed in a terrestrial
laboratory experiment.

The present study was concerned only with the conventional linear stability anal-
ysis predicting the threshold of the convective instability beyond which certain dis-
turbances can be amplified. One must be aware that this instability may be not
self-sustained and thus not observed in experiments without a permanent external
excitation. For the thermocapillary-driven flow of low-Prandtl-number liquids with-
out a magnetic field, the thresholds of absolute or global instabilities, which ensure
development of self-sustained hydrothermal waves, are just slightly higher than the
threshold of convective instability (Priede & Gerbeth 1997c). Whether this holds also
with a magnetic field is not yet clear.
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Appendix. Asymptotic solutions for the longitudinal finite-depth modes
A.1. Insulating bottom

In this case, an asymptotic solution is sought directly by considering 1� Ha � Pr−1/2

and assuming the most unstable disturbance to have a long wavelength k � 1. Since
without the magnetic field the critical wave is long, for sufficiently small Pr we
expect the wavelength to remain long up to a large enough Ha . This assumption
is validated by the following solution. The hydrodynamic part of the problem is
solved in general form for arbitrary frequency which will be specified further when
considering particular instability modes.

Similarly to the case of the Hartmann-layer mode considered in § 3.1.2, equations
(2.10)–(2.12) are solved by the method of matched asymptotic expansions. For this
purpose, again we distinguish the Hartmann layer at the free surface where the
coordinate is stretched as z+ = ( 1

2
− z)Ha . The vertical velocity at the free surface

is found in the same way as in § 3.1.2, resulting in (3.8). For the Hartmann layer at
the bottom another stretched coordinate z− = ( 1

2
+ z)Ha is introduced. It is easy to

find that the solution for the leading-order vertical velocity at the bottom is trivial
w−0 (z−) ≡ 0. Equation (2.10) written for the leading-order perturbation in the bulk of
the layer takes the form d2wo0/dz

2 = 0 whose general solution is wo0(z) = Ao0 + Bo0z.
Matching of the core solution with both Hartmann layers yields Ao0 = Bo0/2 = 1

2
. The

corresponding composite solution is

w0(z) = 1
2

+ z − exp (−( 1
2
− z)Haγi). (A 1)

Now we proceed to the leading-order perturbation of the longitudinal velocity for
which upon twofold integration equation (2.11) takes the form[

d2

dz2
− λ−Ha2

]
u0 = ū′0w0 − (Ha2 + λ)(E0 + F0z), (A 2)

where E0 and F0 are constants of integration. The boundary conditions (2.16) now
being [

d2

dz2
− λ−Ha2

]
u′0 = kyū

′w′0 on z = ± 1
2
,

require F0 = 0, satisfying at once the boundary conditions at both the free surface
and at the bottom. Analogously to the Hartmann-layer mode, this implies E0 can be
determined by some kind of solvability condition for the higher-order solution.

For the Hartmann layer at the bottom equation (A 2) takes the form[
d2

dz2−
− 1− λ̃

]
u−0 = −(1 + λ̃)E0,

whose solution bounded as z− → ∞ and satisfying the non-slip condition u−0 (0) = 0 is

u−0 (z−) = E0(1− e−γiz−).

The core solution is uo0(z) = E0. For the Hartmann layer at the free surface equation
(A 2) reads as [

d2

dz2
+

− 1− λ̃
]
u+

0 = −ũ′w+
0 − (1 + λ̃)E0
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and has a bounded solution u+
0 (z+) = E0 + F+

0 e−γiz+ + u0,p(z+), where

u+
0,p(z+) = − 1

γi

∫ z+

sinh (γi(z+ − τ))ũ′(τ)w+
0 (τ) τ.

The free-slip boundary condition u+
0

′
(0) = 0 gives F+

0 = γ−1
i u

+′
0,p(0). The composite

solution is obtained as u0(z) = u+
0 (z+)−E0e

−γiz− . To determine the unknown constant
E0, we have to consider the next order in k perturbation of the longitudinal velocity
governed by

d2

dz2

[
d2

dz2
− λ−Ha2

]
u1 =

d2

dz2

[
ū′w1

]
+ k2

[
d2u0

dz2
+ Ha2u0 − (λ+ Ha2)E0

]
.

Integrating this equation over the depth of the layer and taking into account boundary
conditions (2.16), now being[

d2

dz2
− λ−Ha2

]
u′1 = kyū

′w′1 on z = ± 1
2
,

we obtain the following constraint:∫ 1/2

−1/2

(u0(z)− (1 + λ̃)E0) dz = 0,

which must be satisfied for the above problem to be solvable for u1. This yields

E0 = − Re

Ha3

γi

(λ̃+ Ha−1γ−1
i )(1 + λ̃)(1 + γi)

=
Re

Ha3
E1, (A 3)

which completes the leading-order solution for the longitudinal velocity.

A.1.1. Low-frequency instability

Now we proceed to the leading-order temperature perturbation governed by[
Pr−1D2 − λ]T0 = −u0, (A 4)

and satisfying T ′0(± 1
2
) = 0 at both boundaries assumed to be adiabatically insulated.

Following the case without magnetic field (Priede & Gerbeth 1997b), we assume
here the critical frequency to be low compared to the inverse characteristic thermal
relaxation time over the depth of the layer: ω � Pr−1. Then the temperature
perturbation may be sought as

T0(z) =

∞∑
n=0

PrnT0,n(z).

For the leading-order term equation (A 4) is d2T0,0/dz
2 = 0, whose solution satisfying

adiabatic boundary conditions is T0,0 = const. The relation of this solution with
the velocity perturbation is given by the solvability condition for the next-order
temperature perturbation for which equation (A 4) takes the form

d2T0,1

dz2
= −u0(z) + (λ+ Pr−1k2)T0,0.
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After integration of the above equation over the depth of the layer with adiabatic
boundary conditions, we find

T0,0 =
1

λ+ Pr−1k2

∫ 1/2

−1/2

u0(z) dz = E0

1 + λ̃

λ+ Pr−1k2
.

Now it remains to substitute this solution into the stress balance condition (2.13).
Considering ω̃ � 1, we obtain

Re2 =
Ha5

k2
(λ+ Pr−1k2)/E1

≈ −Ha

k2
(2Ha2λ2 + Pr−1k2(2Ha3 + 3

2
λ2) + Ha−2λ(2Ha3 + 3

2
λ2 + 2Ha2Pr−1k2)).

Since the marginal Reynolds number must be a real quantity, the frequency of
neutrally stable waves is determined by requiring the imaginary part of the right-
hand side of the above expression to be zero which yields

ω =
2√
3

Ha(Ha + Pr−1k2)1/2. (A 5)

Then the marginal Reynolds number is

Re = Ha5/2
(

8
3
(Hak−2 + Pr−1) + 2(PrHa)−2k2

)1/2
. (A 6)

The critical wavenumber at which the marginal Reynolds number attains its minimum
is defined by dRe/dk|k=kc = 0.

A.1.2. Intermediate-frequency instability

Here we consider the thermal relaxation time to be comparable to the period of
oscillations, meaning that the temperature perturbations spread from the free surface
only over the thermal oscillatory boundary rather than over the whole liquid layer.
Our aim here is to find an asymptotic solution of equation (A 4) which is singularly
perturbed now. In line with the method of matched asymptotic expansions, the liquid
layer is divided into a core region and thermal boundary layers at the free surface
and at the bottom. In the core region, where the heat diffusion over the depth of
the layer is negligible, the temperature perturbation is found as To

0 = E0Pr/γ2
t , where

γt = (λPr + k2)1/2. For the thermal boundary layer at the free surface, we introduce a
stretched coordinate ζ = ( 1

2
− z)γt, in terms of which equation (A 4) is[

d2

dζ2
− 1

]
T+

0 = −E0Prγ−2
t .

A bounded solution of this equation is T i
0(ζ) = E0Prγ−2

t + Fi0e
−ζ . Now it remains to

consider the Hartmann layer at the free surface, for which the coordinate is stretched
as z+ = ( 1

2
− z)Ha , and the solution is sought as T0(z) = To

0 +T+
0 (z+). Then equation

(A 4) takes the form

d2T+
0

dz2
+

= −PrHa−2(u+
0 (z+)− E0)

and can be solved as

T+
0 (z+) = F+

0 + PrHa−2θ+
0 (z+),

where the particular solution is θ+
0 (z+) = − ∫ z+

∞ (z+− τ)(u+
0 (τ)−E0) dτ. After matching

the Hartmann- and thermal-layer solutions To
0 + T+

0 (∞) = T i
0(0), we obtain F+

0 =
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Fi0 = F0. The composite solution may be written as

T0(z) = E0Prγ−2
t + F0e

−ζ + PrHa−2θ+
0 (z+).

The last unknown coefficient F0 is determined from the boundary condition
T ′0(1/2) = 0

F0 = Prγ−1
t Ha−1θ+

0

′
(0) = Prγ−1

t (λ̃+ Ha−1γ−1
i )E0.

Now the leading-order perturbation of the surface temperature can be evaluated as

T0(1/2) ≈ −1

2

PrRe

Ha3

γ2
i

γ2
t

(
1

λ̃
− 7

4
− Ha−1

λ̃
2

+ (λ̃Pr)1/2Ha

)
.

Substituting the above solution together with that for the vertical velocity (A 1) into
the stress balance condition (2.13), we obtain the dispersion relation sought whose
imaginary part written in leading-order terms is

7

4
− Ha3

ω2
−
(

Prω

2

)1/2

− k2 Ha2

Prω2
= 0. (A 7)

In the long-wave limit k = 0, this equation relating the frequency and wavenumber of
neutrally stable waves gives two different modes with frequencies ω1 ≈ 2/

√
7Ha3/2 and

ω2 ≈ 49/8Pr−1. Both these modes merge together and disappear when the Hartmann

number becomes sufficiently large Ha ∼ Pr−2/3. Note that the frequency of the first
mode is considerably lower than the inverse thermal relaxation time over the depth
of the layer. Thus the assumption ω & Pr−1 employed to obtain this solution does
not hold for this mode. It means that by assuming the heat disturbances to spread
over the thermal boundary layer, whose thickness turns out to be considerably larger
than the actual depth of the liquid layer, we have underestimated the effect of these
disturbances on the perturbation of the surface temperature. However, comparing ω1

with the corresponding exact result given by equation (A 5) at k = 0, we see that the
difference between the two is just a factor ( 3

7
)1/2. Thus for such low frequencies as ω1

the contribution of the heat disturbances in the Hartmann layer at the free surface
has no effect on the asymptotics of the solution. As for the other mode, ω2 ∼ Pr−1 is
the frequency at which the thermal boundary layer at the free surface is anticipated
to appear. Thus for the second mode our approach gives at least a qualitatively
correct result as well. Consequently, despite some quantitative inaccuracy for the first
mode the given approach is expected to be qualitatively correct and therefore able to
recover the asymptotics of the corresponding exact solution.

Further, it is advantageous to consider equation (A 7) to define the wavenumber as
a function of the frequency:

k(ω) =
Pr1/2

Ha

(
7
4
ω2 −

(
Prω5

2

)1/2

−Ha3

)1/2

. (A 8)

According to the above equation, two instability modes exist only for sufficiently long
waves. Both modes merge together and disappear at the frequency at which k attains
a maximum. From the condition dk/dω = 0 defining this maximum, the frequency at
the merging point is found to be ω∗ = 98

25
Pr−1. The corresponding wavenumber is

k∗ = Ha−1Pr−1/2
((

7
5

)5 −Ha3Pr2
)1/2

. (A 9)

Both modes disappear completely when the merging point shifts to infinitely long
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waves k∗ = 0 which happens at Ha∗ =
(

7
5

)5/3
Pr−2/3. This result confirms the corre-

sponding estimate found above.

A.2. Conducting bottom

There are two important facts for the asymptotic analysis suggested by the order-
of-magnitude estimates. For the sake of brevity, in the following solution we shall
directly exploit only the estimate k ∼ 1 while the presence of an oscillatory sub-layer
inside the Hartmann layer suggested by ω � Ha2 will not be explicitly used in the
course of solution until the dispersion relation is obtained.

As was done above, the leading-order perturbation of the vertical velocity is readily
found to be

w0(z) =
sinh (γo(

1
2

+ z))

sinh (γo)
− w+

0 (z+)− 1,

where w+
0 (z+) = 1 − e−γiz+ is the Hartmann-layer solution, γo = k(λ̃/(1 + λ̃))1/2,

γi = (1 + λ̃)1/2, and z+ = Ha( 1
2
− z).

To simplify matching of the longitudinal velocity it is advantageous to rewrite
equation (2.11) as a set of two equations using the vertical component of the induced
electric current perturbation ĵ:[

D2 − λ] û− kū′ŵ + iHa(ez ·D)ĵ = 0, (A 10)

iHa(ez ·D)û = D2ĵ. (A 11)

For the Hartmann layer at the free surface, equation (A 11) takes the form

i
du+

0

dz+

=
d2j+

0

dz2
+

,

whose solution satisfying the boundary condition j+
0 (0) = 0 may be written as

j+
0 (z+) = i

∫ z+

0

(u+
0 (τ)− E+

0 ) dτ,

where E+
0 is a constant of integration. Substituting this solution into equation (A 10),

we obtain for the Hartmann layer at the free surface[
d2

dz2
+

− 1− λ̃
]
u+

0 = −kũ′w+
0 − E+

0 .

The solution of the above equation may be written as

u+
0 (z+) = G+

0 e−γiz+ + E+
0 /(1 + λ̃) + u+

0,p(z+),

where u+
0,p(z+) = −(k/γi)

∫ z+ sinh (γi(z+ − τ))ũ′(τ)w+
0 (τ) dτ is the particular solution;

G+
0 = u+

0,p

′
(0)/γi because of the boundary condition u+

0

′
(0) = 0.

Similarly, for the Hartmann layer at the bottom we obtain

j−0 (z−) = −i

∫ z−

0

(u−0 (τ)− E−0 ) dτ,

u−0 (z−) = G−0 e−γiz− + E−0 /(1 + λ̃).

For the core region where equations (A 10), (A 11) take the form

Ha λ̃uo0 = −i
djo0
dz

, −iHa
duo0
dz

= D2jo0 ,
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the general solution may be obtained as

uo0(z) = Go0 sinh (γo(
1
2

+ z)) +Ho
0 sinh (γo(

1
2
− z)),

jo0 (z) = iHa λ̃/γo(G
o
0 cosh (γo(

1
2

+ z))−Ho
0 cosh (γo(

1
2
− z)).

Matching of velocity perturbations between the core region and both Hartmann
layers yields Go0/E

+
0 = Ho

0/E
−
0 = [(1 + λ̃) sinh (γo)]

−1. After matching the electric
current perturbations, we find E−0 = 0 and

E+
0 =

kγo tanh (γo)

Ha λ̃

∫ ∞
0

ũ′(τ)w+
0 (τ) dτ = − Re

Ha3

k2 tanh (γ̃o)

λ̃1/2(1 + γi)
.

Now we can proceed to the temperature perturbation for which equation (2.12) in
the Hartmann layer at the free surface takes the form

d2T+
0

dz2
+

= −PrHa−2k−1u+
0 (z+).

The solution of the above equation satisfying the boundary condition T+
0
′(0) = 0 is

T+
0 (z+) = I+

0 − PrHa−2k−1

∫ z+

0

(z+ − τ)u+
0 (τ) dτ.

Equation (2.12) for the core region[
d2

dz2
− k2 − Prλ

]
To

0 = −Pruo0(z) = −PrGo0 sinh (γo(
1
2

+ z))

has a solution

To
0 (z) = Io0 sinh (γt(

1
2

+ z))− PrG+
0

sinh (γo(
1
2

+ z))

γ2
o − γ2

t

,

satisfying the boundary condition To
0 (− 1

2
) = 0, where γt = (k2 +Prλ)1/2. Note that the

Hartmann layer at the bottom is neglected here because it gives a higher order small
correction to the temperature perturbation. After matching the Hartmann layer and
the core temperature perturbations, we find

T0(
1
2
) =

PrReHa−3k

λ̃1/2(1 + λ̃)(1 + γi)

[
tanh (γo)

γ2
o − γ2

t

− tanh (γt)

γt

(
λ̃

γo
− γo

γ2
o − γ2

t

)]
.

Substituting the above result into the stress balance condition (2.13) and taking into
account that according to the order-of-magnitude estimates 1 � λ̃ � Pr−1Ha−2, we
obtain the following leading-order solutions for the marginal Reynolds number and
the corresponding frequency:

Re = ω̃(k)

(
Ha5

Prk tanh (k)

)1/2

, ω̃(k) =

(
k3 + 3k2 sinh (2k)

PrHa2
√

2(sinh (2k)− 2k)

)2/3

.
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